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Abstract.

  A novel language system has given rise to promising alternatives to 
standard formal and processor network models of computation. A textual 
structure called an interstring is proposed. When linked with an abstract 
machine environment, an interstring shares sub-expressions, transfers data, 
and spatially allocates resources for the parallel evaluation of dataflow. 
Formal models called the α-Ram family are introduced, designed to support 
interstring programming languages (interlanguages). Distinct from dataflow, 
graph rewriting, and FPGA models, α-Ram instructions are bit level and 
execute in situ. They support sequential and parallel languages without the 
space/time overheads associated with the Turing Machine and λ-calculus, 
enabling massive programs to be simulated. The devices of one α-Ram 
model, called the Synchronic A-Ram, are fully connected and simpler than 
FPGA LUT’s. A compiler for an interlanguage called Space, has been 
developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and 
deterministic. Barring memory allocation and compilation, modules are 
referentially transparent. At a high level of abstraction, modules exhibit a 
state transition system, aiding verification. Data structures and parallel 
iteration are straightforward to implement, and allocations of sub-processes 
and data transfers to resources are implicit. Space points towards highly 
connected architectures called Synchronic Engines, that scale in a Globally 
Asynchronous Locally Synchronous manner. Synchronic Engines are more 
general purpose than systolic arrays and GPUs, and bypass programmability 
and resource conflict issues associated with multicores.

I.  THE SPATIAL CHALLENGE TO 
TREE AND GRAPH BASED COMPUTATION.

  Consider the hypothesis that trees and graphs have not in themselves 
alone, revealed an optimal linguistic environment in which to represent 
formal structures that possess shared parts, and require some form of 
computation or transformation, such as dataflow. The current work may be 
summarised as an attempt to identify such an environment, and then to use it 
as a foundation for a novel computational paradigm, incorporating low level 
and intermediate formal models, up to and including massively parallel 
programming models and machine architectures. Described in this report, the 
implementation of a viable, general purpose parallel programming 
environment on top of a simple, highly connected formal model of 
computation, without excessive space or time overheads, provides a 
foundational framework for reconfigurable synchronous digital circuits, and 
coarse grained arrays of ALUs (CGAs). In so doing, an alternative to the 
systolic approach to programming and controlling CGAs is attained, which 
delivers a novel paradigm of general purpose, high performance 
computation. 
  The report questions two outlooks associated with the multi-processor 

paradigm of parallel computing. Firstly, that the Von Neumann sequential 
thread and architectural model, are suitable building blocks respectively, for a 
general purpose parallel programming model, and a parallel computing 
architecture. Secondly, that the absence of faster than light communication, 
suggests that asynchrony and non-determinism are fundamental to parallel 
programming frameworks. Without originally intending to do so, the 
consideration of linguistic issues has led to an espousal for synchronous 
and deterministic approaches to parallel programming, and highly connected 
aggregates of ALUs as parallel architectures. 
 Henceforth all chapter and section numerical references relate to the main 
report, which can be downloaded via links on www.isynchronise.com. In 
chapter 8, a set of mostly synchronous architectural models with low area 
complexity high speed interconnects called Synchronic Engines are outlined, 
possessing spatially distributed, yet deterministic program control. 
Synchronic Engines are embryonic efforts at deriving architectures from a 
formal model of computation called the Synchronic A-Ram defined in chapter 
3, inspired by interstrings and the interlanguage environment presented in 
chapter 2. 
  An interstring is a set-theoretical construct, designed for describing many-
to-many relationships, dataflows, and simultaneous processes. It may be 
represented as a string of strings of symbol strings, where the innermost 
strings are short and have a maximum length. Interstring syntax is confined 
to a strictly limited range of tree forms, where only the rightmost, and the set 
of rightmost but one branches are indefinitely extendable. In conjunction 
with a simple, denotational machine environment, an interstring can 
efficiently express at an intermediate syntactic/semantic level, sharing of 
subexpressions in a dataflow, data transfers, spatial allocation of machine 
resources, and program control for the parallel processing of complex 
programs. Languages based on interstrings are called interlanguages1 . 
Although not incorporated in the current implementation, an interlanguage 
compiler may duplicate the implicit parallelism of Dataflow Models (see 
2.3.3), where arithmetic operations from differing layers in a dataflow are 
triggered simultaneously, if outputs from operations in earlier layers become 
available soon enough. 
 In contrast with dataflow and visual programming formalisms, interlanguages 
are purely textual, making them directly amenable for digital representation 
and manipulation. The report explains how interlanguages, and more 
generally interlanguages based on more deeply nested string structures, 
where some inner strings are restricted to having a maximum length, are also 
useful for representing data structures intended to be processed in parallel. 
  The Synchronic A-Ram is a globally clocked, fine grained, simultaneous 
read, exclusive write machine. It incorporates a large array of registers, 
wherein the transmission of information between any two registers or bits 
occurs in constant time. Although problematic from a physical standpoint, it 
will be argued that this assumption facilitates a conceptual advance in 
organising parallel processing, and can be worked around in the derivation 
of feasible architectures by various means, including the use of emerging 
wave based interconnect technologies, and permitting differing propagation 
delays across variable distances within a synchronous domain. Less optimal, 
purely wire based platforms, and globally asynchronous, locally 
synchronous (GALS) strategies may also be considered.
  In a succession of Synchronic A-Ram machine cycles, an evolving subset 
of registers are active. Subject to some restrictions, any register is capable of 
either holding data, or of executing one of four primitive instructions in a 
cycle: the first two involve writing either ‘0’ or ‘1’ to any bit in the register 
array, identified by instruction operands, the third instructs the register to 
inspect any bit in the register array, and select either the next or next but one 
register for activation in the following machine cycle, and the fourth is a 

1 The interlanguage environment introduced here, has no relation to Selinker’s 

linguistics concept concerned with second natural language acquisition. 
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jump which can activate the instruction in any register in the following 
machine cycle, and also those in subsequent registers specified by an offset 
operand. Whilst the model’s normal operation is relatively simple to explain, 
it’s formal definition incorporates error conditions, and is somewhat more 
involved than that of a Turing Machine. 
  In common with assembly languages, schematic representations used for 
VLSI design and programming FPGAs, the hardware description languages 
VHDL and Verilog, and configuration software for systolic dataflow [1] [2] 
in coarse grained reconfigurable architectures, interlanguages may be 
characterised as spatially oriented. A programming language is spatially 
oriented if (i) there is some associated machine environment abstract or 
otherwise, and (ii) a program instruction or module, is linked in some way 
before runtime with that part of the machine environment, in which it will be 
executed in. 
  Vahid [3] and Hartenstein [4] stress the need for educators to consider 
spatially oriented languages, as important as conventional, non-spatial 
software languages in computer science curricula, because they are 
fundamental for expressing digital circuits, dataflows and parallel processes 
generally. The attitude that software and hardware may be studied in 
isolation from each other, is profoundly misguided. This report contains an 
account of how a high level, spatial language can easily deal with 
communication, scheduling, and resource allocation issues in parallel 
computing, by resolving them explicitly in an incremental manner, module 
by module, whilst ascending the ladder of abstraction. In what is in my view 
the abscence of viable alternatives, it can be conjectured that parallel 
languages have to be spatial. In 1.2, it is discussed how an non-spatial 
language and compiler system that attempts to deal with allocation and 
contention implicitly, is subject to a particular kind of state explosion, 
resulting from transforming a collection of high level non-spatial processes, 
into the lowest level, machine-bound actions. Lee in [26] argues non-
deterministic multi-threading introduces another kind of state explosion, 
making the establishment of program equivalence between threads 
intractable.
  Space is a programming interlanguage for the Synchronic A-Ram, and may 
describe algorithms at any level of abstraction, with the temporary 
exceptions of virtual functions and abstract data types. Moreover, it is 
possible to incorporate parallel iteration and typed data structures, without 
adding the overheads and deadlocks to programs, that are associated with 
conventional dataflow or graph based programming environments (see 2.3.3 
and 2.3.4.) An interlanguage compiler produces code that at runtime, is 
capable of generating massive operational parallelism at every level of 
abstraction. 
  Providing a simple programming methodology is adhered to, Space’s 
runtime environment, perhaps surprisingly, does not need to consider 
resource contention, deadlocks, and Synchronic A-Ram machine errors, 
because these issues have been implicitly dealt with at compile time. Race 
and time hazards are resolved by local synchronisation mechanisms. These 
features are scalable, and conceptually represent significant advantages over 
multi-threading on processor networks.

II  INTERCONNECT AND SYNCHRONISATION TECHNOLOGIES, 
AND RELATED WORK IN RECONFIGURABLE COMPUTING.

 Reference is made to David Miller’s work in 1.2.2, on using light as a 
means of synchronising room sized systems to nanosecond/picosecond 
intervals, of relevance to the construction of very large, globally clocked 
computers. In 8.3, the prospects of implementing a highly interconnected 
massive array of small computational elements, using either an optically or 
spintronically based network architecture are discussed. In 8.4, it is also 
explained how global synchrony can be relaxed in Synchronic Engines, to 

allow greater scalability. Massively parallel programs would still be 
conceived as globally clocked processes, aiding programmability, but would 
to a large extent run asynchronously.
  The apparent lack of wave-based intra-chip connections allowing 
reconfigurable connectivity on the order of nanoseconds, indicates that more 
efficient Synchronic Engines may not be fully realisable in the short to mid 
term. In 8.2.1, a photonic connection system is described, in which 
microsecond switching between large numbers of nodes without chip area 
explosion, seems within reach. In 8.2.2, a spin-wave technology is outlined, 
that may enable nanosecond data exchange times for nano architectures 
incorporating millions of devices. A comparison between interlanguage 
programming on currently buildable Synchronic Engines, and multi-
threading on multi-processor networks on standard industry benchmarks, 
will become available further down the research path.
  The consideration of using silicon alone to realise less efficient machines, 
revealed a close relationship between the current approach and the field of 
reconfigurable computing, which was only fully appreciated in the final 
stages of writing this report. The action of a Synchronic A-Ram register is 
more primitive than a logic gate or FPGA look up table, and the register 
array’s bits are in a sense, fully connected. It will be argued in a future paper, 
that if propagation delay were introduced into the definition (see 3.5.2), the 
model is fundamental to physical reconfigurable computing. Synchronic A-
Rams are finer grained and more connected, and may therefore simulate 
FPGAs and CGAs without the inefficiencies that conventional reconfigurable 
models would have simulating each other.
  Further, spatial computation based on systolic processing, on grids of 
coarse grained functional units, that might be termed systolic spatialism, 
lacks an abstract model, beyond the coarse grained, systolic grid itself. The 
approach suffers from being domain restricted; the developer is obliged to 
cast every program as a Digital Signal Processing-like collection of pipes or 
streams [5]. Systolic spatialism is however, well matched to silicon’s 
restricted, planar connectivity.2 It is an effective approach for maximising 
utilization and performance in wire-based parallel architectures, for 
applications that can be cast as streams [1] [2] [7].
  Interlanguages form the basis for developing a new class of more general 
purpose programming models for wire based FPGAs and Coarse Grained 
Arrays of ALUs. There is a concern that the interlanguage model might lead 
to lower efficiency of resource utilisation compared with purely systolic 
approaches, unless compensatory mechanisms are introduced (see 8.4).  
  Alternative kinds of programming environments for FPGA and 
reconfigurable platforms require a significant amount of hardware expertise 
from the developer [6], do not port to new architectures [7], and do not 
adequately support general purpose parallelism [8]. Sequential language 
environments for reconfigurable platforms might offer the prospect of 
parallelizing the software base, but by their nature do not allow the 
expression of parallel algorithmics. Their compilers [9] [10] rely on 
reassembling dataflows from arithmetic operations and loop unrolling, for 
parallelization. They cannot transform inherently sequential algorithms, 
which might appear anywhere in the spectrum of abstraction, into efficient 
parallel programs. Languages that offer extensions for multi-threading on 
reconfigurable fabrics [11] [12], inherit the limitations of multi-threading (see 
1.2). 
  The authors in [3] [4] stress the severe overheads arising out of instruction 
fetch in processor networks, that are bypassed in spatial computing, because 
instructions are executed in situ. In 1.2, the case against processor networks 
is further examined, in that they lack a good high level programming model 
and theoretical basis. The impact of their ubiquity in fields of application is 
discussed. 
2  When wave based technologies allowing three dimensional connectivity become 
available, systolic programming and hardware may scale to some extent depending on 
the application, by increasing the dimensionality of the systolic grid.
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III   A NEW APPROACH TO LANGUAGE AND COMPUTATION.

 A more detailed overview of the report follows. The historical development 
of human language has not been optimal, for it’s use as a template for formal 
and programming languages. Tree syntax is common to all natural 
languages, and is defective in that as used in a conventional manner, it can 
structurally only directly link one part of speech, to at most one more 
complex part of speech. Conventional tree syntax cannot indicate the 
sharing of subexpressions of an expression, or directly describe many to 
many relationships. Subexpression repetition is required, which discards a 
potential logarithmic compression in the size of the representation. Such 
trees exhibit a high degree of variability, where any individual branch may 
be arbitrarily long, requiring a complex parsing phase before semantic 
processing. Trees alone cannot directly express spatial information 
indicating data transfers and resource allocation within a computational 
environment, or which subexpressions may be semantically processed 
simultaneously. Non-spatial languages are unsuitable as parallel 
programming languages, because their compilation involves the solution of 
a combinatorial explosion, which is argued to be one source of the parallel 
computing crisis. The use of names of constructions, or pointers to locations 
in a computer memory alone, to access and reuse results of subexpression 
evaluations, represent a partial solution which discards an opportunity to 
devise a better general purpose language structure. 
  The emergence of the non-spatial tree, as the de facto, standard language 
structure for syntax and semantics, has had serious consequences for our 
capacity to describe and reason about complex objects and situations. The 
inability to directly share subexpressions contributes to code bloat in 
commercial software, disconnected representations of environments, and a 
kind of linguistic schizophrenia. An unrestricted recursive application of 
rewriting rules for symbol strings is suboptimal linguistically, in that it is 
not conducive for describing simultaneous processes. Non-spatial tree 
formalisms have deterred the introduction of an explicit notion of time and 
computation into mathematics. 
  The problematic nature of subexpression repetition in tree languages has 
been noticed before, and has given rise to graph/data flow models, such as 
Term Graph Rewriting, Petri Nets, Semantic Nets, and Dataflow models. But 
these approaches have not entered the mainstream. Although the basic 
structure used is that of a graph, they are described in conventional tree-
based mathematics, involving the non-spatial transformation of expressions 
alone, and lack an explicit notion of a computational environment. They are 
implemented on networks of Turing Machines/processors, do not call for a 
fundamental rethink of formal models of computation, and rarely call for an 
alternative computer architecture to the processor network. 
  An alternative to conventional tree based syntax and semantics has been 
devised in the form of an a language environment called interlanguage. The 
environment consists of a language based on the notion of the interstring, 
and an abstract memory and functional unit array, capable of storing 
elements, and performing operations of some given algebra. Interlanguage 
allows the sharing of subexpressions to be explicitly represented, with linear 
cost with respect to the number of subexpressions. The tree form of an 
interstring is highly regular, requiring only a minimal syntactic analysis 
phase before semantic processing. Interstrings indicate which 
subexpressions may be semantically processed simultaneously, and allow 
resource allocation to be performed implicitly. Interstrings are also suitable 
for representing data structures with shared parts, and are intended to replace 
trees and graphs as standard programming  structures. 
  The α-Ram family of machines are formal models of computation, which 
have been developed to be the target machines for the compilation of high 
level programs expressed in an interlanguage. Members of the α-Ram family 
with infinite memories are Turing Computable. 

 A member of the α-Ram family with finite memory, called the Synchronic A-
Ram, may be viewed as a formal model underpinning the concept of an 
FPGA or reconfigurable machine. It supersedes finitistic versions of the 
Turing Machine and the λ-Calculus, the current standard models of Computer 
Science, in it’s ability to efficiently support a high level parallel language. 
There is the prospect of a proper formalisation of parallel algorithmics, a new 
way of relating operational and denotational program semantics, and novel 
opportunities for parallel program verification. Massive instruction level 
parallelism can be supported, storage and processing resources are integrated 
at the lowest level, with a control mechanism similar to a safe Petri Net 
marking. 
  An interlanguage called Space, has been designed to run on the 
Synchronic A-Ram. Space is an easy to understand, fully general purpose 
parallel programming model, which shields the programmer from low level 
resource allocation and scheduling issues. Programs are textual rather than 
graphic, and iteration, data structures, and performance evaluation are 
supported. Space has a high level sequential state transition semantics, and 
solves the conceptual problem of how to orchestrate general purpose parallel 
computation, in a way that has not been achieved before.
 The set-theoretical/logical definition of procedures for assembling 
constructions in mathematics, and the constructions themselves, are normally 
considered to reside in a universe of discourse, which is neutral and abstract 
from any computational implementation. A claim is made however, that 
conventional tree based formalisms in pure mathematics, harbour implicit 
notions of sequential, asynchronous and recursion oriented computation. 
Further, a universe of discourse incorporating an explicit parallel 
computational environment, is amenable to the adoption of parallel forms of 
reasoning, that bypass an implicitly sequential style in conventional 
mathematical discourse.
 Synchronic Engines are physical architectural models derived from the 
Synchronic A-Ram and Space, and are composed of large arrays of fully, or 
extensively connected storage and processing elements. The models suggest 
optoelectronic, and spin-wave based hardware specifications. If interconnect 
issues can be overcome, there is a new avenue for developing programmable 
and efficient high performance architectures. 
 Without having yet provided detail, the class of Space-like interlanguages, 
and the associated formal and hardware platforms, which during execution 
preserve their parallelism and lack of resource contention, constitute a 
paradigm of parallel computation that will be termed synchronic 
computation. 

IV SPACE.

  Space is a programming interlanguage with a functionality comparable to C. 
Space programming has an applicative style, and bypasses the readability 
and efficiency issues associated with recursion based, functional style 
programming. In order to explore design issues arising from the interaction of 
interlanguage and machine resources, a Synchronic A-Ram simulator has 
been written, and a substantial software project has resulted in a programming 
environment called Spatiale (Spatial Environment) being developed. 
Spatiale is a non-GUI, unix console application written in C, and 
incorporates a compiler that transforms Space programs into Synchronic A-
Ram machine code. The package and documentation are available via links 
on www.isynchronise.com.
 Spatiale is intended to serve as a prototype for Synchronic Engine 
programming environments. Space would require little adaptation in order to 
program  Synchronic Engines. It is an explicitly parallel, deterministic, 
strictly typed, largely referentially transparent  language, that retains the 
notion of updateable states. Although the Space programmer is obliged to 
consider some scheduling and resource allocation issues, these are relatively 
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transparent within the narrow, synchronous and deterministic context of a 
module, and he is shielded from issues pertaining to pre-defined modules. 
They have been resolved by earlier composition, leaving the compiler to 
implicitly perform these tasks at compilation time.  
  Space modules are not generally intended to retain states between 
activations. At the current stage of the compiler boot strapping process, a 
high degree of referential transparency can be attained. It cannot be 
unequivocably ascribed to Space, because the programmer is obliged to 
ensure a module resets it’s internal values after execution. In addition, 
memory allocation and reconfigurable interconnect features are required to 
bridge the gap between a high level program environment and a low level 
machine. It is envisioned that later versions of Space will have built in 
support for low level mechanisms, that will guarantee referential transparency 
for new program modules.
  In Space, as well as in the Synchronic A-Ram machine code, more than one 
simultaneous write to a storage area, and more than one simultaneous call to 
a processing resource, results in machine error. The error mechanisms do not 
appear to restrict the expression of deterministic parallel algorithmics. Space 
modularisation and programming methodology, lead to the avoidance of 
race conditions and deadlocks, and enhanced software maintainability. The 
ability to modularise scheduling and resource allocation, and avoid resource 
contention, gives rise to programming models and architectures, which have 
decisive advantages over multi-threading for processor networks. 
  A deterministic Space program with simultaneous sub-programs running in 
a synchronous (or virtually synchronous) environment, is much easier to 
understand than a non-deterministic, asynchronous network of Von 
Neumann processes. Space has the benefits of functional programming, such 
as modular construction and lack of side effects, despite having updateable 
states. In addition, there are not the stack related inefficiencies associated 
with recursive function based computing. In order to provide proof of 
concept for synchronic computation, a range of massively parallel high level 
programs have already been successfully run on the simulator with outputs 
as expected. This has, to the best of my knowledge, never been achieved 
before with a simulated formal model of computation.
  An implementation of synchronic computation onto processor networks is 
conceivable. Parallel sub-processes could be broken down into coarse 
grained blocks, and then sequentialised to run individually on a core, in the 
hope that some parallel speedup is preserved. Unfortunately, this approach 
would likely lead to low utilization of the panoply of conventional 
processor resources, and poor performance overall. Fine grained processes 
would need to synchronise and communicate across non-adjacent cores, 
resulting in long waits for maintaining cache coherency, and for the 
interconnection network to transfer results, leaving ALUs idle for many 
machine cycles. In addition, interlanguages offer no obvious opportunities 
for exploiting the extensive hardware resources dedicated to supporting 
speculation, predication, and the elimination of race and time hazards for 
multiple, out of order instruction issue. 

V  ORGANISATION OF THE MAIN REPORT.

  Chapter two justifies the introduction of the interlanguage environment, by  
comparing the ability of interstrings to represent dataflow and dataflow 
processing, with trees and graphs, and by providing a critique of historical 
attempts in Computer Science to deal with the structural defect of tree 
languages. Chapter three describes the α-Ram formal models of computation, 
inspired by interstrings. Chapter four defines a programming language called 
Earth, which is close to the Synchronic A-Ram machine code, and allows 
the definition of the most primitive program modules used in Space. 
Chapters 5 to 7 present the Space interlanguage itself. Space’s type system 
and program declarations are laid out in chapter 5, and chapter 6 defines the 

basic interstring language structures, and presents some simple program 
examples. Chapter 7 covers programming constructs, enabling the 
description of massive parallelism, along with a range of program examples. 
In chapter 8, Synchronic Engines are presented. Chapter 9 discusses the 
relative merits of the standard models compared with α-Ram machines, and 
gives an outline of how efficiently simulable models offer new opportunities 
for unifying logic and mathematics with foundational computer science.
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