
INTRODUCTION TO THE REPORT
“INTERLANGUAGES AND SYNCHRONIC MODELS OF

COMPUTATION.”

A.V. Berka.
Isynchronise Ltd.

email: alex.berka@isynchronise.com

Abstract.

 A novel language system has given rise to promising alternatives to
standard formal and processor network models of computation. A textual
structure called an interstring is proposed. When linked with an abstract
machine environment, an interstring shares sub-expressions, transfers data,
and spatially allocates resources for the parallel evaluation of dataflow.
Formal models called the α-Ram family are introduced, designed to support
interstring programming languages (interlanguages). Distinct from dataflow,
graph rewriting, and FPGA models, α-Ram instructions are bit level and
execute in situ. They support sequential and parallel languages without the
space/time overheads associated with the Turing Machine and λ-calculus,
enabling massive programs to be simulated. The devices of one α-Ram
model, called the Synchronic A-Ram, are fully connected and simpler than
FPGA LUT’s. A compiler for an interlanguage called Space, has been
developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and
deterministic. Barring memory allocation and compilation, modules are
referentially transparent. At a high level of abstraction, modules exhibit a
state transition system, aiding verification. Data structures and parallel
iteration are straightforward to implement, and allocations of sub-processes
and data transfers to resources are implicit. Space points towards highly
connected architectures called Synchronic Engines, that scale in a Globally
Asynchronous Locally Synchronous manner. Synchronic Engines are more
general purpose than systolic arrays and GPUs, and bypass programmability
and resource conflict issues associated with multicores.

I. THE SPATIAL CHALLENGE TO
TREE AND GRAPH BASED COMPUTATION.

 Consider the hypothesis that trees and graphs have not in themselves
alone, revealed an optimal linguistic environment in which to represent
formal structures that possess shared parts, and require some form of
computation or transformation, such as dataflow. The current work may be
summarised as an attempt to identify such an environment, and then to use it
as a foundation for a novel computational paradigm, incorporating low level
and intermediate formal models, up to and including massively parallel
programming models and machine architectures. Described in this report, the
implementation of a viable, general purpose parallel programming
environment on top of a simple, highly connected formal model of
computation, without excessive space or time overheads, provides a
foundational framework for reconfigurable synchronous digital circuits, and
coarse grained arrays of ALUs (CGAs). In so doing, an alternative to the
systolic approach to programming and controlling CGAs is attained, which
delivers a novel paradigm of general purpose, high performance
computation.
 The report questions two outlooks associated with the multi-processor

paradigm of parallel computing. Firstly, that the Von Neumann sequential
thread and architectural model, are suitable building blocks respectively, for a
general purpose parallel programming model, and a parallel computing
architecture. Secondly, that the absence of faster than light communication,
suggests that asynchrony and non-determinism are fundamental to parallel
programming frameworks. Without originally intending to do so, the
consideration of linguistic issues has led to an espousal for synchronous
and deterministic approaches to parallel programming, and highly connected
aggregates of ALUs as parallel architectures.
 Henceforth all chapter and section numerical references relate to the main
report, which can be downloaded via links on www.isynchronise.com. In
chapter 8, a set of mostly synchronous architectural models with low area
complexity high speed interconnects called Synchronic Engines are outlined,
possessing spatially distributed, yet deterministic program control.
Synchronic Engines are embryonic efforts at deriving architectures from a
formal model of computation called the Synchronic A-Ram defined in chapter
3, inspired by interstrings and the interlanguage environment presented in
chapter 2.
 An interstring is a set-theoretical construct, designed for describing many-
to-many relationships, dataflows, and simultaneous processes. It may be
represented as a string of strings of symbol strings, where the innermost
strings are short and have a maximum length. Interstring syntax is confined
to a strictly limited range of tree forms, where only the rightmost, and the set
of rightmost but one branches are indefinitely extendable. In conjunction
with a simple, denotational machine environment, an interstring can
efficiently express at an intermediate syntactic/semantic level, sharing of
subexpressions in a dataflow, data transfers, spatial allocation of machine
resources, and program control for the parallel processing of complex
programs. Languages based on interstrings are called interlanguages1 .
Although not incorporated in the current implementation, an interlanguage
compiler may duplicate the implicit parallelism of Dataflow Models (see
2.3.3), where arithmetic operations from differing layers in a dataflow are
triggered simultaneously, if outputs from operations in earlier layers become
available soon enough.
 In contrast with dataflow and visual programming formalisms, interlanguages
are purely textual, making them directly amenable for digital representation
and manipulation. The report explains how interlanguages, and more
generally interlanguages based on more deeply nested string structures,
where some inner strings are restricted to having a maximum length, are also
useful for representing data structures intended to be processed in parallel.
 The Synchronic A-Ram is a globally clocked, fine grained, simultaneous
read, exclusive write machine. It incorporates a large array of registers,
wherein the transmission of information between any two registers or bits
occurs in constant time. Although problematic from a physical standpoint, it
will be argued that this assumption facilitates a conceptual advance in
organising parallel processing, and can be worked around in the derivation
of feasible architectures by various means, including the use of emerging
wave based interconnect technologies, and permitting differing propagation
delays across variable distances within a synchronous domain. Less optimal,
purely wire based platforms, and globally asynchronous, locally
synchronous (GALS) strategies may also be considered.
 In a succession of Synchronic A-Ram machine cycles, an evolving subset
of registers are active. Subject to some restrictions, any register is capable of
either holding data, or of executing one of four primitive instructions in a
cycle: the first two involve writing either ‘0’ or ‘1’ to any bit in the register
array, identified by instruction operands, the third instructs the register to
inspect any bit in the register array, and select either the next or next but one
register for activation in the following machine cycle, and the fourth is a

1 The interlanguage environment introduced here, has no relation to Selinker’s

linguistics concept concerned with second natural language acquisition.

© 2010 Alexander Viktor Berka.
Published on www.isynchronise.com 25 May 2010 by Isynchronise Ltd., London, England.

i

jump which can activate the instruction in any register in the following
machine cycle, and also those in subsequent registers specified by an offset
operand. Whilst the model’s normal operation is relatively simple to explain,
it’s formal definition incorporates error conditions, and is somewhat more
involved than that of a Turing Machine.
 In common with assembly languages, schematic representations used for
VLSI design and programming FPGAs, the hardware description languages
VHDL and Verilog, and configuration software for systolic dataflow [1] [2]
in coarse grained reconfigurable architectures, interlanguages may be
characterised as spatially oriented. A programming language is spatially
oriented if (i) there is some associated machine environment abstract or
otherwise, and (ii) a program instruction or module, is linked in some way
before runtime with that part of the machine environment, in which it will be
executed in.
 Vahid [3] and Hartenstein [4] stress the need for educators to consider
spatially oriented languages, as important as conventional, non-spatial
software languages in computer science curricula, because they are
fundamental for expressing digital circuits, dataflows and parallel processes
generally. The attitude that software and hardware may be studied in
isolation from each other, is profoundly misguided. This report contains an
account of how a high level, spatial language can easily deal with
communication, scheduling, and resource allocation issues in parallel
computing, by resolving them explicitly in an incremental manner, module
by module, whilst ascending the ladder of abstraction. In what is in my view
the abscence of viable alternatives, it can be conjectured that parallel
languages have to be spatial. In 1.2, it is discussed how an non-spatial
language and compiler system that attempts to deal with allocation and
contention implicitly, is subject to a particular kind of state explosion,
resulting from transforming a collection of high level non-spatial processes,
into the lowest level, machine-bound actions. Lee in [26] argues non-
deterministic multi-threading introduces another kind of state explosion,
making the establishment of program equivalence between threads
intractable.
 Space is a programming interlanguage for the Synchronic A-Ram, and may
describe algorithms at any level of abstraction, with the temporary
exceptions of virtual functions and abstract data types. Moreover, it is
possible to incorporate parallel iteration and typed data structures, without
adding the overheads and deadlocks to programs, that are associated with
conventional dataflow or graph based programming environments (see 2.3.3
and 2.3.4.) An interlanguage compiler produces code that at runtime, is
capable of generating massive operational parallelism at every level of
abstraction.
 Providing a simple programming methodology is adhered to, Space’s
runtime environment, perhaps surprisingly, does not need to consider
resource contention, deadlocks, and Synchronic A-Ram machine errors,
because these issues have been implicitly dealt with at compile time. Race
and time hazards are resolved by local synchronisation mechanisms. These
features are scalable, and conceptually represent significant advantages over
multi-threading on processor networks.

II INTERCONNECT AND SYNCHRONISATION TECHNOLOGIES,
AND RELATED WORK IN RECONFIGURABLE COMPUTING.

 Reference is made to David Miller’s work in 1.2.2, on using light as a
means of synchronising room sized systems to nanosecond/picosecond
intervals, of relevance to the construction of very large, globally clocked
computers. In 8.3, the prospects of implementing a highly interconnected
massive array of small computational elements, using either an optically or
spintronically based network architecture are discussed. In 8.4, it is also
explained how global synchrony can be relaxed in Synchronic Engines, to

allow greater scalability. Massively parallel programs would still be
conceived as globally clocked processes, aiding programmability, but would
to a large extent run asynchronously.
 The apparent lack of wave-based intra-chip connections allowing
reconfigurable connectivity on the order of nanoseconds, indicates that more
efficient Synchronic Engines may not be fully realisable in the short to mid
term. In 8.2.1, a photonic connection system is described, in which
microsecond switching between large numbers of nodes without chip area
explosion, seems within reach. In 8.2.2, a spin-wave technology is outlined,
that may enable nanosecond data exchange times for nano architectures
incorporating millions of devices. A comparison between interlanguage
programming on currently buildable Synchronic Engines, and multi-
threading on multi-processor networks on standard industry benchmarks,
will become available further down the research path.
 The consideration of using silicon alone to realise less efficient machines,
revealed a close relationship between the current approach and the field of
reconfigurable computing, which was only fully appreciated in the final
stages of writing this report. The action of a Synchronic A-Ram register is
more primitive than a logic gate or FPGA look up table, and the register
array’s bits are in a sense, fully connected. It will be argued in a future paper,
that if propagation delay were introduced into the definition (see 3.5.2), the
model is fundamental to physical reconfigurable computing. Synchronic A-
Rams are finer grained and more connected, and may therefore simulate
FPGAs and CGAs without the inefficiencies that conventional reconfigurable
models would have simulating each other.
 Further, spatial computation based on systolic processing, on grids of
coarse grained functional units, that might be termed systolic spatialism,
lacks an abstract model, beyond the coarse grained, systolic grid itself. The
approach suffers from being domain restricted; the developer is obliged to
cast every program as a Digital Signal Processing-like collection of pipes or
streams [5]. Systolic spatialism is however, well matched to silicon’s
restricted, planar connectivity.2 It is an effective approach for maximising
utilization and performance in wire-based parallel architectures, for
applications that can be cast as streams [1] [2] [7].
 Interlanguages form the basis for developing a new class of more general
purpose programming models for wire based FPGAs and Coarse Grained
Arrays of ALUs. There is a concern that the interlanguage model might lead
to lower efficiency of resource utilisation compared with purely systolic
approaches, unless compensatory mechanisms are introduced (see 8.4).
 Alternative kinds of programming environments for FPGA and
reconfigurable platforms require a significant amount of hardware expertise
from the developer [6], do not port to new architectures [7], and do not
adequately support general purpose parallelism [8]. Sequential language
environments for reconfigurable platforms might offer the prospect of
parallelizing the software base, but by their nature do not allow the
expression of parallel algorithmics. Their compilers [9] [10] rely on
reassembling dataflows from arithmetic operations and loop unrolling, for
parallelization. They cannot transform inherently sequential algorithms,
which might appear anywhere in the spectrum of abstraction, into efficient
parallel programs. Languages that offer extensions for multi-threading on
reconfigurable fabrics [11] [12], inherit the limitations of multi-threading (see
1.2).
 The authors in [3] [4] stress the severe overheads arising out of instruction
fetch in processor networks, that are bypassed in spatial computing, because
instructions are executed in situ. In 1.2, the case against processor networks
is further examined, in that they lack a good high level programming model
and theoretical basis. The impact of their ubiquity in fields of application is
discussed.
2 When wave based technologies allowing three dimensional connectivity become
available, systolic programming and hardware may scale to some extent depending on
the application, by increasing the dimensionality of the systolic grid.

© 2010 Alexander Viktor Berka.
Published on www.isynchronise.com 25 May 2010 by Isynchronise Ltd., London, England.

ii

III A NEW APPROACH TO LANGUAGE AND COMPUTATION.

 A more detailed overview of the report follows. The historical development
of human language has not been optimal, for it’s use as a template for formal
and programming languages. Tree syntax is common to all natural
languages, and is defective in that as used in a conventional manner, it can
structurally only directly link one part of speech, to at most one more
complex part of speech. Conventional tree syntax cannot indicate the
sharing of subexpressions of an expression, or directly describe many to
many relationships. Subexpression repetition is required, which discards a
potential logarithmic compression in the size of the representation. Such
trees exhibit a high degree of variability, where any individual branch may
be arbitrarily long, requiring a complex parsing phase before semantic
processing. Trees alone cannot directly express spatial information
indicating data transfers and resource allocation within a computational
environment, or which subexpressions may be semantically processed
simultaneously. Non-spatial languages are unsuitable as parallel
programming languages, because their compilation involves the solution of
a combinatorial explosion, which is argued to be one source of the parallel
computing crisis. The use of names of constructions, or pointers to locations
in a computer memory alone, to access and reuse results of subexpression
evaluations, represent a partial solution which discards an opportunity to
devise a better general purpose language structure.
 The emergence of the non-spatial tree, as the de facto, standard language
structure for syntax and semantics, has had serious consequences for our
capacity to describe and reason about complex objects and situations. The
inability to directly share subexpressions contributes to code bloat in
commercial software, disconnected representations of environments, and a
kind of linguistic schizophrenia. An unrestricted recursive application of
rewriting rules for symbol strings is suboptimal linguistically, in that it is
not conducive for describing simultaneous processes. Non-spatial tree
formalisms have deterred the introduction of an explicit notion of time and
computation into mathematics.
 The problematic nature of subexpression repetition in tree languages has
been noticed before, and has given rise to graph/data flow models, such as
Term Graph Rewriting, Petri Nets, Semantic Nets, and Dataflow models. But
these approaches have not entered the mainstream. Although the basic
structure used is that of a graph, they are described in conventional tree-
based mathematics, involving the non-spatial transformation of expressions
alone, and lack an explicit notion of a computational environment. They are
implemented on networks of Turing Machines/processors, do not call for a
fundamental rethink of formal models of computation, and rarely call for an
alternative computer architecture to the processor network.
 An alternative to conventional tree based syntax and semantics has been
devised in the form of an a language environment called interlanguage. The
environment consists of a language based on the notion of the interstring,
and an abstract memory and functional unit array, capable of storing
elements, and performing operations of some given algebra. Interlanguage
allows the sharing of subexpressions to be explicitly represented, with linear
cost with respect to the number of subexpressions. The tree form of an
interstring is highly regular, requiring only a minimal syntactic analysis
phase before semantic processing. Interstrings indicate which
subexpressions may be semantically processed simultaneously, and allow
resource allocation to be performed implicitly. Interstrings are also suitable
for representing data structures with shared parts, and are intended to replace
trees and graphs as standard programming structures.
 The α-Ram family of machines are formal models of computation, which
have been developed to be the target machines for the compilation of high
level programs expressed in an interlanguage. Members of the α-Ram family
with infinite memories are Turing Computable.

 A member of the α-Ram family with finite memory, called the Synchronic A-
Ram, may be viewed as a formal model underpinning the concept of an
FPGA or reconfigurable machine. It supersedes finitistic versions of the
Turing Machine and the λ-Calculus, the current standard models of Computer
Science, in it’s ability to efficiently support a high level parallel language.
There is the prospect of a proper formalisation of parallel algorithmics, a new
way of relating operational and denotational program semantics, and novel
opportunities for parallel program verification. Massive instruction level
parallelism can be supported, storage and processing resources are integrated
at the lowest level, with a control mechanism similar to a safe Petri Net
marking.
 An interlanguage called Space, has been designed to run on the
Synchronic A-Ram. Space is an easy to understand, fully general purpose
parallel programming model, which shields the programmer from low level
resource allocation and scheduling issues. Programs are textual rather than
graphic, and iteration, data structures, and performance evaluation are
supported. Space has a high level sequential state transition semantics, and
solves the conceptual problem of how to orchestrate general purpose parallel
computation, in a way that has not been achieved before.
 The set-theoretical/logical definition of procedures for assembling
constructions in mathematics, and the constructions themselves, are normally
considered to reside in a universe of discourse, which is neutral and abstract
from any computational implementation. A claim is made however, that
conventional tree based formalisms in pure mathematics, harbour implicit
notions of sequential, asynchronous and recursion oriented computation.
Further, a universe of discourse incorporating an explicit parallel
computational environment, is amenable to the adoption of parallel forms of
reasoning, that bypass an implicitly sequential style in conventional
mathematical discourse.
 Synchronic Engines are physical architectural models derived from the
Synchronic A-Ram and Space, and are composed of large arrays of fully, or
extensively connected storage and processing elements. The models suggest
optoelectronic, and spin-wave based hardware specifications. If interconnect
issues can be overcome, there is a new avenue for developing programmable
and efficient high performance architectures.
 Without having yet provided detail, the class of Space-like interlanguages,
and the associated formal and hardware platforms, which during execution
preserve their parallelism and lack of resource contention, constitute a
paradigm of parallel computation that will be termed synchronic
computation.

IV SPACE.

 Space is a programming interlanguage with a functionality comparable to C.
Space programming has an applicative style, and bypasses the readability
and efficiency issues associated with recursion based, functional style
programming. In order to explore design issues arising from the interaction of
interlanguage and machine resources, a Synchronic A-Ram simulator has
been written, and a substantial software project has resulted in a programming
environment called Spatiale (Spatial Environment) being developed.
Spatiale is a non-GUI, unix console application written in C, and
incorporates a compiler that transforms Space programs into Synchronic A-
Ram machine code. The package and documentation are available via links
on www.isynchronise.com.
 Spatiale is intended to serve as a prototype for Synchronic Engine
programming environments. Space would require little adaptation in order to
program Synchronic Engines. It is an explicitly parallel, deterministic,
strictly typed, largely referentially transparent language, that retains the
notion of updateable states. Although the Space programmer is obliged to
consider some scheduling and resource allocation issues, these are relatively

© 2010 Alexander Viktor Berka.
Published on www.isynchronise.com 25 May 2010 by Isynchronise Ltd., London, England.

iii

transparent within the narrow, synchronous and deterministic context of a
module, and he is shielded from issues pertaining to pre-defined modules.
They have been resolved by earlier composition, leaving the compiler to
implicitly perform these tasks at compilation time.
 Space modules are not generally intended to retain states between
activations. At the current stage of the compiler boot strapping process, a
high degree of referential transparency can be attained. It cannot be
unequivocably ascribed to Space, because the programmer is obliged to
ensure a module resets it’s internal values after execution. In addition,
memory allocation and reconfigurable interconnect features are required to
bridge the gap between a high level program environment and a low level
machine. It is envisioned that later versions of Space will have built in
support for low level mechanisms, that will guarantee referential transparency
for new program modules.
 In Space, as well as in the Synchronic A-Ram machine code, more than one
simultaneous write to a storage area, and more than one simultaneous call to
a processing resource, results in machine error. The error mechanisms do not
appear to restrict the expression of deterministic parallel algorithmics. Space
modularisation and programming methodology, lead to the avoidance of
race conditions and deadlocks, and enhanced software maintainability. The
ability to modularise scheduling and resource allocation, and avoid resource
contention, gives rise to programming models and architectures, which have
decisive advantages over multi-threading for processor networks.
 A deterministic Space program with simultaneous sub-programs running in
a synchronous (or virtually synchronous) environment, is much easier to
understand than a non-deterministic, asynchronous network of Von
Neumann processes. Space has the benefits of functional programming, such
as modular construction and lack of side effects, despite having updateable
states. In addition, there are not the stack related inefficiencies associated
with recursive function based computing. In order to provide proof of
concept for synchronic computation, a range of massively parallel high level
programs have already been successfully run on the simulator with outputs
as expected. This has, to the best of my knowledge, never been achieved
before with a simulated formal model of computation.
 An implementation of synchronic computation onto processor networks is
conceivable. Parallel sub-processes could be broken down into coarse
grained blocks, and then sequentialised to run individually on a core, in the
hope that some parallel speedup is preserved. Unfortunately, this approach
would likely lead to low utilization of the panoply of conventional
processor resources, and poor performance overall. Fine grained processes
would need to synchronise and communicate across non-adjacent cores,
resulting in long waits for maintaining cache coherency, and for the
interconnection network to transfer results, leaving ALUs idle for many
machine cycles. In addition, interlanguages offer no obvious opportunities
for exploiting the extensive hardware resources dedicated to supporting
speculation, predication, and the elimination of race and time hazards for
multiple, out of order instruction issue.

V ORGANISATION OF THE MAIN REPORT.

 Chapter two justifies the introduction of the interlanguage environment, by
comparing the ability of interstrings to represent dataflow and dataflow
processing, with trees and graphs, and by providing a critique of historical
attempts in Computer Science to deal with the structural defect of tree
languages. Chapter three describes the α-Ram formal models of computation,
inspired by interstrings. Chapter four defines a programming language called
Earth, which is close to the Synchronic A-Ram machine code, and allows
the definition of the most primitive program modules used in Space.
Chapters 5 to 7 present the Space interlanguage itself. Space’s type system
and program declarations are laid out in chapter 5, and chapter 6 defines the

basic interstring language structures, and presents some simple program
examples. Chapter 7 covers programming constructs, enabling the
description of massive parallelism, along with a range of program examples.
In chapter 8, Synchronic Engines are presented. Chapter 9 discusses the
relative merits of the standard models compared with α-Ram machines, and
gives an outline of how efficiently simulable models offer new opportunities
for unifying logic and mathematics with foundational computer science.

References.

1. PACT XPP Technologies. “Programming XPP-III Processors:
Concepts and tools for programming the PACT XPP-III
Architecture.”, http://www.pactxpp.com/main/index.php

2. Reiner Hartenstein “Basics of Reconfigurable Computing” in
“Designing Embedded Processors A Low Power Perspective” by
Henkel, J.; Parameswaran, S. (Eds.) Springer Verlag (2007) 451-
501.

3 . F. Vahid, “It's Time to Stop Calling Circuits "Hardware",” IEEE
Computer 40, no. 9 (2007): 106-108.

4 . R. Hartenstein, “The Von Neumann Syndrome”.
http://www.fpl.uni-kl.de/staff/hartenstein/Hartenstein-Delft-2007-ftr-
v10.pdf.

5 . W. Najjar and Jason Villareal. “Reconfigurable Commputing in the
New Age of Parallelism”, International Symposium on Systems,
Architectures, Modeling and Simulation 2009, pp255-262.

6 . R.Wain, I. Bush, M. Guest, M. Deegan, I. Kozin and C. Kitchen
“An overview of FPGAs and FPGA programming; Initial
experiences at Daresbury” Technical Report. Computational
Science and Engineering Department, CCLRC Daresbury
Laboratory, November 2006 Version 2.0.

7 . E Caspi et al., “Stream Computations Organized for Reconfigurable
Execution (SCORE),” in Proceedings of the The Roadmap to
Reconfigurable Computing, 10th International Workshop on
Field-Programmable Logic and Applications (Springer-Verlag,
2000), 605-614

8 . C. Brunelli et al., “Reconfigurable hardware: The holy grail of
matching performance with programming productivity,” in
International Conference on Field Programmable Logic and
Applications (FPL 2008), 409-414

9. M. Budiu, G. Venkataramani, et al. “Spatial computation”. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 14 – 26, (2004)

10. Convey Computer Corporation. White Paper “ The Convey HC-1
Computer Architecture Overview”
http://www.conveycomputer.com/Resources/Convey/20Architectur
e/20White/20P.pdf.

11. Ian Page and Wayne Luk, “Compiling Occam into Field-
Programmable Gate Arrays:” in Will Moore and Wayne Luk (Eds)
‘FPGAs’ pages 271-283, Abingdon EE&CS books, 1991.

12. J. A. Bower and et.al., “A Java-based System for FPGA
programming,” FPGA World Conference, 2008.

© 2010 Alexander Viktor Berka.
Published on www.isynchronise.com 25 May 2010 by Isynchronise Ltd., London, England.

iv

