
The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 6-8 April.
© Alex V Berka 8th April 2020 - www.isynchronise.com

The α-Ram family - bit level models for parallelism and concurrency.

Alex Berka
Isynchronise Ltd.

1

BCTCS April 8th 2020

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

1. “Models and languages for parallel computation.” D B. Skillicorn and D Talia, ACM Computing Surveys 30, no. 2 (1998): 123–169.

 “Data Centers in the Wild: A Large Performance Study.” R Birke, L.Y Chen, E Smirni. IBM Research Report RZ 3820 (2012).

 “The Future of the Data Center: Heterogeneous Computing.” Charles Rowe. (2016)

 https://www.dataversity.net/future-data-center-heterogeneous-computing/#.

Problems in Parallelism and Concurrency.

2

2. “What are the Fundamental Structures of Concurrency? We still don’t know.” S. Abramsky. ENTCS Volume 162, 2006, Pgs 37-41

 “Beautiful Concurrency.” Simon Peyton-Jones. Chapter in “Beautiful Code” edited by A. Oram and G. Wilson,

 (O'Reilly, 2007).

“The problem with threads.” E.A. Lee IEEE Computer 39, no. 5 (2006): 33-42.

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

α-Ram family and Synchronic Computation.
(References and resources on www.isynchronise.com.)

Benefits of α-Ram machine models:

• One machine called the Synchronic A-Ram is put forward as a fine grained theoretical model for parallelism.
• 4 primitive instructions are sufficient to express any finite parallel or concurrent process.
• Languages have simple semantics and a neutral machine platform - easier to reason about languages.
• Concurrency protocols and other constructs can be given lightweight implementations, without introducing
complexity from the particulars of higher level models.
• Good for detecting errors and misconceptions - better for language design.
• For hardware design physical constraints can be introduced in a least restrictive order - reduce bias towards existing
architectural types.
• Unknown opportunities for developing innovative programming environments, architectures, and theoretical
frameworks.

Some Background to Synchronic Computation:

Questions the outlook that parallel/concurrent software can be adequately researched and developed in languages abstracted
from hardware.

• Complete abstraction from hardware overkill - important opportunities for statically avoiding hazards/deadlocks lost.
• An abstract machine environment can maintain abstraction whilst avoiding side effects.

Deterministic parallelism can subsume non-deterministic concurrency for most (if not all) purposes.
• Planet can already be synchronised to near nanosecond precision.
• For larger machines introduce asynchrony only towards end of compilation - program semantics can be preserved.
• Oracles, and clocked agents hiding their internal workings from other clocked agents, can model non-determinism.

3

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com 4

The A-Ram, with example of the Synchronic A-Ram.

0
1
2
3
4
5
6
7
8
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Table 1. Instruction format for 32 bit Synchronic A-Ram (p = 5, q = 2)

opcode
bits 30-31

register index (x)
bits 5-29

offset index (y)
bits 0-4

Table 2a. Instruction set for Synchronic A-Ram; a clocked, Concurrent Read, Exclusive Write Machine.

opcode Instruction
(assembly language)

action

0⃣0⃣ wrt0 x y Write 0 into (x,y).

0⃣1⃣ wrt1 x y Write 1 into (x,y).

1⃣0⃣ cond x y Examine contents of (x,y).
If zero, mark instruction in next register for execution in
next cycle.
Else, mark instruction in next but one register.

1⃣1⃣ jump x y Mark all instructions from instruction x, up to an
including instruction x+y for execution in the next cycle.

2n-p-2 - 2

2n-p-2 - 1

Synchronic A-Ram
memory block.

(0,0)

Busy Bit

Basic
Programming

Element

Synchronic A-Ram
Instructions needed.

Sequencing Jump

Selection Cond

Iteration Jump and Cond

Parallel Fork Jump

Table 2b. Basic elements for parallelism.

44

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com 5

The A-Ram, with example of the Synchronic A-Ram.

0
1
2
3
4
5
6
7
8
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Table 1. Instruction format for 32 bit Synchronic A-Ram (p = 5, q = 2)

opcode
bits 30-31

register index (x)
bits 5-29

offset index (y)
bits 0-4

Table 2a. Instruction set for Synchronic A-Ram; a clocked, Concurrent Read, Exclusive Write Machine.

opcode Instruction
(assembly language)

action

0⃣0⃣ wrt0 x y Write 0 into (x,y).

0⃣1⃣ wrt1 x y Write 1 into (x,y).

1⃣0⃣ cond x y Examine contents of (x,y).
If zero, mark instruction in next register for execution in
next cycle.
Else, mark instruction in next but one register.

1⃣1⃣ jump x y Mark all instructions from instruction x, up to an
including instruction x+y for execution in the next cycle.

2n-p-2 - 2

2n-p-2 - 1

Synchronic A-Ram
memory block.

(0,0)

Busy Bit

Basic
Programming

Element

Synchronic A-Ram
Instructions needed.

Sequencing Jump

Selection Cond

Iteration Jump and Cond

Parallel Fork Jump

Table 2b. Basic elements for parallelism.

5

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Comment

reserved for machine status bits

indicate machine is busy

jump to initiate both jump gates

1st AND gate includes carry thread

2nd AND gate

test input bit 0

bit 0 is zero, so jump to exit sequence

test input bit 1

bit 1 is zero, so jump to exit sequence

bit 0 and 1 are zero, so test result of 2nd AND gate

test input bit 2

bit 2 is zero, so write 0 into result bit of 2nd AND gate

test input bit 3

bit 3 is zero, so write 0 into result bit of 2nd AND gate

bit 3 is 1, so write 1 into result bit of 2nd AND gate

test result of 2nd AND gate

2nd AND gate was zero, so write final result of zero

2nd AND gate was one, so write final result of one

longer exit sequence

short exit sequence

write final result of zero

jump to halt instruction

write final result of 1

instruct machine to successfully halt

24 stores input bits 0-3, 2nd AND gate result in bit 4, and final result in bit 5

Fig 1: 4-input AND gate with two 2-input AND gates running in parallel

Reg

0

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24

Reg cycle 1

0

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 0 1 1 1 1

Reg cycle 2

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 0 1 1 1 1

Reg cycle 3

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 0 1 1 1 1

Reg cycle 4

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 0 1 1 1 1

Reg cycle 5

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 0 1 1 1 1

Reg cycle 6

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 1 1 1 1 1

Reg cycle 7

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 1 1 1 1 1

Reg cycle 8

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 0 1 1 1 1 1

Reg cycle 9

0 1

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 1 1 1 1 1 1

Reg cycle 10

0 0

1 wrt1 0 0

2 jump 3 1

3 jump 5 0

4 jump 10 0

5 cond 24 0

6 jump 18 0

7 cond 24 1

8 jump 19 0

9 jump 15 0

10 cond 24 2

11 wrt0 24 4

12 cond 24 3

13 wrt0 24 4

14 wrt1 24 4

15 cond 24 4

16 jump 20 1

17 jump 21 1

18 jump 19 0

19 jump 20 1

20 wrt0 24 5

21 jump 23 0

22 wrt1 24 5

23 wrt0 0 0

24 1 1 1 1 1 1

Simple Program Example.

6

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Spatiale 1.0 environment and current status.

The project’s current software tool was released in 2010.
Warning: Does not compile with recent versions of gcc - use gcc 3.3 or near version (MacOS Panther has it).

Spatiale -- (https://sourceforge.net/projects/spatiale/files/)

A unix console application written in C.
Simulator for a 32-bit Synchronic A-Ram.
Back end generates 32-bit Synchronic A-Ram machine code.

Front end languages:

Earth
User friendly assembly language close to the level of machine code.
Powerful enough to implement complex sequential digital circuits, with massive circuit parallelism.
Implements arithmetic-logic functional units and can concisely generate 000s lines of machine code.

Space
Higher level language system with spatial semantics - uses Earth modules.
Future version will be fully general purpose for massive parallelism and concurrency.
Code has a circuit style with functionality comparable to C.

Environment and Languages for 32-bit Synchronic A-Ram.

7

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Module for 32-bit Synchronic A-RAM Lines of Earth code
(w/o line breaks)

Lines of Compiled
Machine Code
(# registers)

Running time in A-Ram cycles

32 bit incrementer 21 262 4-67

Sequential 32-bit OR gate 12 100 3-66

Parallel 32-bit OR gate 28 140 23-30

Parallel 32-bit pairwise negate 18 136 4

Parallel 32-bit AND gate n/a 97 14-18

8-bit serial adder 138 138 170-184

8-bit look-ahead carry adder Space Program 1221 110

32-bit serial adder 138 138 674-736

32-bit barrel shift 129 2190 8

32-bit test for equality 43 424 16

32-bit shift left 24 139 7

prog source copy (R-RAM) 40 1845 7-9

prog target copy (W-RAM) 51 3548 7-9

prog copy register 71 5429 7-9

Jump Tree for starting 1024 threads n/a 1057 3

Jump Tree for starting 65,536 threads n/a 67,651 5

Table 3. Modules with register counts and cycle times.

Some implemented low level modules.

8

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com 9

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

p ≳3 is an integer and is called the offset. n = 2p is the number of elements in a register, each element
stores a bit. In this example p = 4, the register bit width n = 16. Each register has a cursor pointing to
some memory block σi. Initially each register points to the same memory block in which it resides. The
memory block has 512 registers.

Table 4. Instruction format for 16 bit Sequential B-Ram

Sequential B-Ram - an α-Ram with countably infinite memory cells.

opcode
bits 15-13

register index (x)
bits 4-13

offset index (y)
bits 0-3

Table 5. Instruction set for Sequential B-Ram

opcode instruction
(assembly language)

action

0⃣0⃣0⃣ wrt0 x y Write 0 into (x,y) of memory block σi , which is
pointed to by the instruction/register’s cursor.

0⃣0⃣1⃣ wrt1 x y Write 1 into (x,y) of memory block σi ,which is
pointed to by the instruction/register’s cursor.

0⃣1⃣0⃣ cond x y Examine contents of (x,y) of memory block pointed
to by cursor.
If zero, jump to instruction in next register of the
same memory block as the instruction.
Else, jump to instruction in next but one register.

0⃣1⃣1⃣ jump x Jump to instruction in register x of memory block
pointed to by the cursor.

1⃣0⃣0⃣ mvrt x Move cursor of register x of memory block pointed
to by the cursor, once to the right.

1⃣0⃣1⃣ mvlt x Move cursor of register x of memory block pointed
to by cursor, once to the left..

....

Register Cursor

σ0 σ1 σi

10

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

σ i,0,0() = 0,σ i,0,1() = 0

σ i,0,0() = 1,σ i,0,1() = 0

σ i,0,0() = 1,σ i,0,1() = 1

Tuple combination Comment Action

Less significant
zero bit

Set bit, and halt machine.

Less significant
one bit

Reset bit, and repeat
loop.

Most significant
bit

(always one)

Reset bit, and set new
final bit in next block, and

halt machine.

Fig 2: Sequential B-Ram stored program in memory block zero for incrementing indefinitely large integer.

Table 6. Pseudocode for i th iteration of main loop

Sequential B-Ram program for incrementing an indefinitely large integer.

11

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

p ≳3 is an integer and is called the offset. n = 2p is the number of elements in a register, each element
stores a bit. In this example p = 4, the register bit width n = 16. Each register has a cursor pointing to
some memory block σi. Initially each register points to the same memory block in which it resides. The
memory block has 512 registers.

Table 7. Instruction format for 16 bit Synchronic B-Ram (p = 4)

Synchronic B-Ram - a parallel α-Ram with countably infinite memory cells.

opcode
bits 15-13

register index (x)
bits 4-13

offset index (y)
bits 0-3

Table 8. Instruction set for Synchronic B-Ram.

opcode instruction
(assembly language)

action

0⃣0⃣0⃣ wrt0 x y Write 0 into (x,y) of memory block σi , which is
pointed to by the instruction/register’s cursor.

0⃣0⃣1⃣ wrt1 x y Write 1 into (x,y) of memory block σi ,which is
pointed to by the instruction/register’s cursor.

0⃣1⃣0⃣ cond x y Examine contents of (x,y) of memory block pointed
to by cursor.
If zero, jump to instruction in next register of the
same memory block as the instruction.
Else, jump to instruction in next but one register.

0⃣1⃣1⃣ jump x y Jump to instruction in register x of memory block
pointed to by the cursor, up to an including
instruction x+y for execution in the next cycle.

1⃣0⃣0⃣ mvrt x Move cursor of register x of memory block pointed
to by the cursor, once to the right.

1⃣0⃣1⃣ mvlt x Move cursor of register x of memory block pointed
to by cursor, once to the left.

....

Register Cursor

σ0 σ1 σi

12

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Related Work.
• Multi-Tape Turing Machine. Hopcroft,JE Ullman,JD “Introduction to Automata Theory, Languages, and
Computation.” Pg 161. (Addison- Wesley 1979)

Parallelization of n instances of a 1-tape Turing machine with m states, results in an n-tape Turing
Machine with m n states. Berka A. V., “Interlanguages and Synchronic Models of Computation”, Pg 234.
http://arxiv.org/pdf/1005.5183 published 2010.

• Petri Nets. Petri, Carl A. (1962). Kommunikation mit Automaten (Ph. D. thesis). University of Bonn.

Implementation of an n-input logic gate in one transition requires 2n places.

• High Level Synthesis of sequential programs into RTL descriptions of Sequential Logic Circuits. I.
Page, "Constructing Hardware-Software Systems from a Single Description," J. VLSI Signal Processing,
Dec. 1996, pp. 87-107.

Source programs can generate huge RTL descriptions.
Bit level, but digital circuits are not fundamentally primitive structures.
Semantics of selection in C programs is not fundamental - based on constructs multiplexers/
demultiplexers.

• Proposal for another Invariance Thesis

(Sequential) Invariance and Parallel Computation Theses: Peter van Emde Boas. “Machine models and simulations.” In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity, pages 1–66. North-
Holland, Amsterdam, 1990.

Parallel Invariance Thesis:

 Reasonable parallel machines can simulate each other with constant factor overheads in space and time.

13

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Conclusion.

α-Rams present:

• Ultra fine grained machine models.
• A simple semantics for languages - just 4 primitive instructions can express any concurrent module.
• A neutral machine platform for language and protocol design, without introducing biases from higher level models.
• Tractable simulations of complex what if scenarios.
• A basis for investigating processes running on a basic device, rather than in formalism abstracted from hardware.
• A member called the Synchronic A-Ram, which is put forward as a finite machine model for general purpose parallelism and

concurrency.
• For hardware design physical constraints can be introduced in a least restrictive order, thereby reducing bias towards existing

architectural types.
• B-Rams have infinite memories, and are Turing Computable.
• Machine concepts underlying Synchronic Computation.

14

Download slides and papers from isynchronise.com/resources.

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

α-Rams & Synchronic Computation (SC) project.

SC bootstraps the development of parallel languages and machine architectures
based on a novel theoretical approach.

• Develop a non-graph based, textual language system incorporating an abstract machine environment (interlanguage),
for concurrent expression and concise description of many-to-many relationships and DAGs.

• Use interlanguage features to provide insight for developing formal, bit-level machine models of parallel computation (α-
Ram family).

• Use interlanguages and α-Rams to develop a general purpose environment (Space) for parallelism/concurrency.

• Use Space and α-Rams to develop specialised and more general purpose parallel architectures (Synchronic Engines).

• Using only enough informal logic and set theory to define α-Rams, attempt to recast mathematical structures, including
logic and the axioms of set theory, as parallelised computational structures. Both constructive and non-constructive
approaches could be pursued. (In contrast with Homotopy Type Theory, which is tied to the sequential λ-calculus,
conventional tree syntax based formalisms, and abstracted from machines.)

• Further practical and theoretical objectives.

15

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Standard
Formal
Models

Lowest Level of
Abstraction

Simple
Semantics

Suitable for
study of

computability

Suitable for
study of time

and space
complexity

Parallelism
available

Tractable for
computationally

simulating Parallelism

Efficient for
computationally

simulating Random
Access of Memory

Suitable for simulating
processes and testing
constructs in parallel/

concurrent language design

Turing Machine bit level yes yes yes yes
(Multi-Tape)

no No No

λ-calculus
below

bit level
yes yes no no N/A No N/A

Register
Machines

(RASP etc..)

register less so less so less so no N/A Yes N/A

RAM/Von
Neumann

Model

register less so less so less so no N/A Yes N/A

α-RAM bit level informally yes
formally perhaps

less so

Don’t know Don’t know yes yes Yes Yes

Table 10. Standard Models (& α-RAM).

Warning: May contain value judgements.

Table of Related Work 1

16

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Warning: May contain omissions and value judgements.

Parallel
Model

Lowest Level of
Abstraction

Involves notion of
a machine

Associated
Machine Architecture/

Implementation

General Purpose for
Parallelism

Inherently
deadlock free

Computationally efficient for Machine
Model to execute Parallelism/

Concurrency

Deterministic
mode of execution

λ-graph parallel
rewriting

bit level No Von Neumann
Network
(VNN)

Yes With
Transactional
Memory - Yes

No because of overheads
incurred by graph manipulations,

and recursion-to-iteration
transformations.

Dependent on
implementation

Dataflow/
Streaming Model/
Cellular Automata.

word/register Yes VNN//DSP/Coarse
Grained Array

(CGA)

No Yes for
Synchronous

Reactive
Languages

Yes Dependent on
implementation

Petri Nets bit level Yes VNN/DSP/CGA No No bit level - No
higher -Yes

No

CSP bit level No Various e.g.
Edinburgh

Concurrency
Workbench

Yes No Yes No

Occam bit level Yes VNN/FPGA Yes No Low processor
utilization

No

Multi-threading bit level VNN generally
assumed

VNN Good for sequential
task parallelism and
divide and conquer,

less so for everything
else

No
Low processor

utilization

No

Bulk Synchronous
Model

register level Yes VNN Single Program
Multiple Data - no

Yes low processor
utilization

Yes

High Level
Synthesis of C

bit level Von Neumann
Core attached
to ASIC/FPGA

Von Neumann Core
attached to ASIC/

FPGA

Normally only inner
loops of sequential

programs are
dealt with.

Logic verified
at the C level.

Yes for accelerated inner loops. No

OpenACC Can operate at
sub-register

level

Assumes
Heterogeneous

Machine

Heterogeneous
(VNN/GPU/FPGA)

Yes With Lock
Free

Programming
- Yes

Low utilization of Von Neumann
cores, GPUs and FPGAs more

efficient

Yes

α-Ram/Space bit level Yes Heterogeneous
(Synchronic Engine

in development/
GPU/FPGA)

Yes Yes Yes Yes

Table 11. Parallel Models and α-Ram/Space

Table of Related Work 2

17

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com 18

Formal definition of the Synchronic A-Ram
(We elide q, which is set to 2.)

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com

Types of Errors.

1.Marking Fail. A legal marking cannot be a multiset. (In Petri Net parlance, each cycle in a run should have a safe marking.) If a register is activated more than once in the
same cycle, then the marking is emptied and (0,1) is set.
2. Write Fail. The Synchronic A-Ram performs simultaneous writes, but is not a concurrent write machine in the conventional sense. If at least two instructions write to the same
location (x,y) in the same cycle, then the marking is emptied and (0,2) is set.
3. Halt Fail. The final marking should always only activate the special halt instruction. If wrt0 0 0 is not the only instruction in a marking, then the marking is emptied and error bit
(0,3) is set. This error helps to ensure the module halt is meaningful, and as intended.
4.Live Fail. A program should not unexpectedly generate an empty marking. If the marking becomes empty (without the halt instruction having been activated in the previous
cycle), then the marking is emptied and (0,4) is set, and the machine halts in failure. This error helps to ensure the module halt is meaningful, and as intended.
5.Cond Fail. If a cond instruction in the last but one register in the memory block is activated for execution, then the positive consequent of the cond is undefined. The machine
ignores the instruction and writes a 1 to (0,5).
6.Consequent Fail. A cond instruction may also be misused if any two of the triplet of a cond instruction, it’s negative consequent instruction, and positive consequent instruction
are in a marking. If this occurs the marking is emptied and (0,6) is set.
7.Active Fail. An instruction should not have its contents modified in the same cycle in which it is active. If the marking contains a write to a bit within a marked register, then the
marking is emptied and (0,7) is set.
8.Jump Fail. A jump instruction should not attempt to mark a register index which is illegal or does not exist. If the destination cell points to the zero register, or if the destination
cell plus the offset exceeds the total number of registers in the memory block (), then the marking is emptied and (0,8) is set.
9.Error Fail. Programs may not write to the designated error bits. The marking that includes a wrt instruction to any bit in register zero, other than the zeroth bit, is illegal, and
(0,9) is set.

Notes:
A Synchronic A-Ram machine cycle may be viewed as having a read phase, followed by a write phase. Therefore instructions cond a b, and a wrtx a b can occur in the same
marking, where the cond instruction reads (a,b), before it is overwritten by the wrt instruction. The errors are evaluated sequentially within a cycle, but could be reformulated to
be processed in parallel.

The proposed error detection scheme imposes a substantial computational cost for every machine cycle, not only for a simulation, but also for hardware based on the concept.
Errors may however, be bypassed with a suitably designed language, compiler and programming methodology, thereby eliminating the need for much of the scheme’s
implementation. (No proof as yet.) The main benefit of the error scheme has been to assist in the debugging of Spatiale 1.0, and thus far, it can be reported that a wide range
of compiled (massively parallel) programs, producing outputs as expected, without activating the error detection mechanisms that have been implemented.

Error Scheme for Synchronic A-Ram

19

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com
Fig 3. State Transformation Function for Synchronic A-Ram p,σ ,µ,η , recall n = 2 p.

20

The α-Ram family - bit level models for parallelism and concurrency. BCTCS 2020 April 6-8. © Alex V Berka 8th April 2020 www.isynchronise.com 21

