
Why are Interlanguages and Synchronic Computation
of any relevance to you?

www.isynchronise.com.

 Synchronic Computation is a style of computing based on a novel language system
called interlanguage, which has highlighted serious defects in human natural languages. A
new approach to language theory and computer science indicates that the historical
development of human language has not been optimal for itʼs use as a template for
mathematical and computer programming languages. More alarmingly, defects associated
with human languages also place a question mark on their adequacy as efficient media for
expressing rational, connected thought.

 The grammar of any natural language is based on a hierarchical tree structure,
whose tips are words in a language, and whose nodes represent various grammatical
parts of speech such as main clause, relative clause, noun phrase, verb phrase etc.. It is
argued in a report [1] published on the above website and the arXiv web archive, that tree
syntax has two serious defects:

The Single Parent Restriction.

 It is in the nature of the hierarchical tree form, that any part of speech may only be a
subpart of at most one more complex part of speech. For example, a noun phrase may
only participate in the clause or sentence in which it resides, and not in other clauses or
sentences. A relative clause is only relative to the main clause of the sentence of which it
is a part, and not relative in addition to any other sentences. This aspect of syntactic
construction in tree languages, will be referred to as the single parent restriction (SPR).

 A language system possessing SPR, limits a part of speech describing an object,
from participating directly in the expression of more than one relationship, unless some
form of repetition is used. As a consequence, tree languages are not ideally suited to
describing many-to-many relationships between objects, which happen to be everywhere
in human experience. In normal discourse, pronouns or some form of naming of complex
objects is used, to ameliorate the effects of SPR. It is argued in [1] the circumventions
represent partial solutions which discard an opportunity to devise a better general purpose
language structure, and that conventional tree languages are wholly unsuited for
describing many-to-many relationships between objects.

 It is likely that SPR has been carried over into leading, semantic representations of
language in human cognition, even if later processing produces semantic networks [2] not
subject to the SPR, where an object node may participate in many relationships. The
circumstantial evidence for this is the semantic aspect of parts of speech (e.g. noun
phrases, verb phrases), suggesting trees are significantly involved on the semantic level,
and the fact that a non-trivial amount of work is required to transform a tree into a non-tree
network or semantic network form. If this is the case, then a further sub-optimal outcome
ensues for natural languages, as well as for formal languages whose semantics preserve
the tree aspect of their syntax. In the next section, it is explained how SPR places
obstacles in front of the goal to arrive at a language system that conveys many meanings
at the same time.

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

http://www.isynchronise.com
http://www.isynchronise.com

Inability to support multi-serial forms of language.

 It is known that the mind is capable performing many kinds of operations at the same
time, but human language seems to have an inherent serial aspect. At a cocktail party, we
may attend to one conversation in the general hubbub, but not more than one. Outside of
poetry or literary forms, we may not generally convey more than one basic sentence
meaning at the same time in day to day communication. Multi-serial versions of computer
languages can already be said to be understood in some sense, by programmers of
parallel computers, who must describe and orchestrate multiple simultaneous events1,
even if the programs are initially read in a serial fashion.

 Leaving aside for the moment the issue of whether we might even be able to
understand a multi-serial form of a declarative language delivered in real time, it is argued
in [1] that a failure to address SPR directly in designing a language system, also obscures
which sentences or parts of speech can be processed or understood at the same time.
Human language cannot directly express spatial information indicating information
transfers and allocation of jobs to mental resources, which would be needed for multiple
meanings to be understood simultaneously. Solving the SPR problem, also leads to
solving the non-spatial issue in human language, potentially opening the door to the
design of multi-serial forms of communication. Although our physiology is not oriented
towards it, there is nothing physically impossible about multi-serial communication. If the
requisite cognitive infrastructure were in place, then explicitly multi-serial communication
might be achieved through the means of microwave channels, transmitted and received by
physical devices attached to the brain by a neural interface.

 The emergence of the non-spatial tree, as the de facto, standard language structure
for humans, has had serious consequences for our capacity to describe and reason about
complex objects and situations. The inability to directly share subexpressions leads to an
exponential increase in the size of expressions, leading to excessive representational and
computational repetition in human cognition. SPR leads to disconnected representations
of environments, and a kind of linguistic schizophrenia. The serial-oriented, and non-
spatial nature of language, places fundamental limits on the speed and complexity of
human thought2.

Implications for Computer Science and Mathematics.

 Natural languageʼs defects have consequences not just for our ability to
communicate with each other. The defects have been carried over to computer and
mathematical languages that are based on natural syntax. It is argued in [1] that tree
formalisms have held back the development of high performance computers, and deterred
the introduction of an explicit notion of time and computation into mathematics.

 Non-spatial languages are unsuitable as parallel programming languages for multi-
core computer architectures, because their compilation and efficient mapping to resources
requires the solution of a combinatorial explosion, which is argued to be one source of the
parallel computing crisis. The use of names of constructions, or pointers to locations in a

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

1 Whilst music (without lyrics) does not explicitly convey declarative information, itʼs composition does require
the appreciation, description and scheduling of sounds from simultaneously active instruments.

2 It is open to question if the limitations of natural language contribute to irrationality and aggression in
human behaviour.

computer memory alone, to access and reuse results of subexpression evaluations,
represent a partial solution which discards an opportunity to devise a better general
purpose computer language structure.

 The problematic nature of subexpression repetition in tree languages has been
noticed before, and has given rise to graph/data flow models, such as Term Graph
Rewriting, Petri Nets, Semantic Nets, and Dataflow models. But these approaches have
not entered the mainstream. Although the basic structure used is that of a graph, they are
described in conventional tree-based mathematics, involving the non-spatial
transformation of expressions alone, and lack an explicit notion of a computational
environment. They are implemented on networks of Turing Machines/processors, do not
call for a fundamental rethink of formal models of computation, and rarely call for an
alternative computer architecture to the processor network. The next two sections discuss
these matters further, and are more technical in nature.

Interlanguages and Synchronic Models of Computation.

An alternative to conventional tree based syntax and semantics has been devised in the
form of an a language environment called interlanguage. The environment consists of a
language based on the notion of the interstring, and an abstract memory and functional
unit array, capable of storing elements, and performing operations of some given algebra.
Interlanguage allows the sharing of subexpressions to be explicitly represented, with linear
cost with respect to the number of subexpressions. The tree form of an interstring is highly
regular, requiring only a minimal syntactic analysis phase before semantic processing.
Interstrings indicate which subexpressions may be semantically processed simultaneously,
and allow resource allocation to be performed implicitly. Interstrings are also suitable for
representing data structures with shared parts, and are intended to replace trees and
graphs as standard programming structures.

 The α-Ram family of machines are formal models of computation, which have been
developed to be the target machines for the compilation of high level programs expressed
in an interlanguage. Members of the α-Ram family with infinite memories are Turing
Computable. A member of the α-Ram family with finite memory, called the Synchronic A-
Ram, may be viewed as a formal model underpinning the concept of an FPGA or
reconfigurable machine. It supersedes finitistic versions of the Turing Machine and the l-
Calculus, the current standard models of Computer Science, in itʼs ability to efficiently
support a high level parallel language. There is the prospect of a proper formalisation of
parallel algorithmics, a new way of relating operational and denotational program
semantics, and novel opportunities for parallel program verification. Massive instruction
level parallelism can be supported, storage and processing resources are integrated at the
lowest level, with a control mechanism similar to a safe Petri Net marking.

 An interlanguage called Space, has been designed to run on the Synchronic A-Ram.
Space is an easy to understand, fully general purpose parallel programming model, which
shields the programmer from low level resource allocation and scheduling issues.
Programs are textual rather than graphic, and iteration, data structures, and performance
evaluation are supported. Space has a high level sequential state transition semantics,
and solves the conceptual problem of how to orchestrate general purpose parallel
computation, in a way that has not been achieved before.

 The set-theoretical/logical definition of procedures for assembling constructions in
mathematics, and the constructions themselves, are normally considered to reside in a

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

universe of discourse, which is neutral and abstract from any computational
implementation. A claim is made however, that conventional tree based formalisms in pure
mathematics, harbour implicit notions of sequential, asynchronous and recursion oriented
computation. Further, a universe of discourse incorporating an explicit parallel
computational environment, is amenable to the adoption of parallel forms of reasoning,
that would bypass an implicitly sequential.style in conventional mathematical discourse.

 Synchronic Engines are physical architectural models derived from the Synchronic A-
Ram and Space, and are composed of large arrays of fully, or extensively connected
storage and processing elements. The models suggest optoelectronic, and spin-wave
based hardware specifications. If interconnect issues can be overcome, there is a new
avenue for developing programmable and efficient high performance architectures.

Why the next generation of computer architectures called multi-cores, represent a
dead end.

 The parallel computing crisis is still with us because the multi-threading/multi-core
approach has not been made to work well over four decades, despite all the current
industry focus. Isynchronise is a research organisation based in London which
disseminates public domain information and software, and published a report on 25.05.10,
describing a new approach to high performance computing, called Synchronic
Computation.

 On a thread entitled Where do you see the next innovation coming from in high
performance computing?, on the linkedin group (High Performance Computing (HPC).,),
the Director of Intel Research at Santa Clara, John Gustafson called for a fundamental
new approach to parallelism that tackles data management issues and the serial aspect of
programming languages.

 In a reply, Alex Berka of Isynchronise posted a summary of a research report that
addressed these concerns at a fundamental level. Introductory and full versions of the
report are now available from http://arxiv.org/pdf/1005.4798 and http://arxiv.org/pdf/
1005.5183 respectively. The Synchronic Computation Group has been formed, and has
attracted leading academics and professionals, including John Gustafson himself.
(Membership naturally does not imply agreement with the Synchronic Computation
approach).

 Alex Berka is a researcher who wishes to place the work in his report [1] in the public
domain. Summarising the report, Berka said quote: My goal was to subject the foundations
of language to a level of rigour and scrutiny commensurate with Anglo-Saxon tradition of
Analytical Philosophy, with a view to developing non-serial forms of language, and new
approaches to foundational informatics and high performance computing.

 The research is now under study by leading academics, and has fundamental
implications for mathematics as well as computer science. The worlds leading forum on
foundations of mathematics (http://cs.nyu.edu/mailman/listinfo/fom) accepted and posted a
summary three days ago. (Posting does not imply the groups agreement with summary
contents.)

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183
http://cs.nyu.edu/mailman/listinfo/fom
http://cs.nyu.edu/mailman/listinfo/fom

Summary of Synchronic Computation

 Natural Language has major structural defects considered from a parallel
computational point of view, that have been carried over to programming languages that
are based on natural syntax. [Insert your favourite multi-threading language] is such a
language, and does not support the following features:

-An ability to directly share subexpressions in data structures and dataflow, leading to
excessive representational and computational repetition, and contributing to the
phenomenon of code bloat.
-An ability to tag data transfers with soft machine connections expressed at the preceding
level of abstraction.
-An ability to tag operations with soft machine resources expressed at the preceding level
of abstraction.

 These factors are intimately related to multi-threading issues such as deadlock and
resource conflict, decreasing speedup with increasing thread/core count, lack of portability,
and the parallel computing crisis itself. Superior approaches for parallel computing are
GPUs/SIMD programming, FPGAs, and Digital Signal Processing on ALU arrays, but all
are special purpose, and suffer from not being a general purpose programming and
machine model of parallelism.

The Synchronic Alternative.

Tagging and subexpression sharing in the revolutionary Interlanguage system, allow multi-
threading issues to be circumvented by resolving them explicitly at the modular level.
Contention issues at lower levels of abstraction have been resolved by earlier submodule
composition. Synchronic Engine architectures are in design stage, derived from a brand
new theoretical model called the Synchronic A-Ram, based on the Interlanguage system.
Interlanguage programming tools support the above language features, and are currently
in planning stage for commercially available, reconfigurable machine architectures. Higher
performance is expected from dedicated Synchronic architectures, that together with
Interlanguage toolkits will enable

- faster processing
- simpler management of complexity
- better software verification and maintainability
- better portability

Initial studies suggest Synchronic Engines/Interlanguages represent a general purpose
solution, that could offer up to 100x speedup on conventional platforms.

Interlogic Database Models.

The mathematical basis of synchronic computation suggests a family of new database
models called Interlogic Database Models, oriented to massively parallel query processing
and transaction updates on Synchronic Engines and compatible reconfigurable
architectures. Novel Customer Relationship Management applications are in planning
stage, that will exhibit enhanced deductive capabilities and processing volumes. Further
information on development timeframes, and compatibilities with industry leading CRM
tools will be available soon.

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

Why Now ?

Optoelectronic, molecular, and spintronic technologies are now under development, that
have outgrown the basis of current programming models. Synchronic Engines and
Interlanguages are general purpose, and bypass silicon based constraints and
evolutionary baggage from human languages.

[1] A V Berka “Interlanguages and Synchronic Models of Computation.” http://arxiv.org/pdf/
1005.5183 Published by Isynchronise Ltd on www.isynchronise.com 25th May 2010.
[2] Woods, William A. (1975) "What's in a link: foundations for semantic networks," in D. G.
Bobrow & A. Collins, eds. (1975) Representation and Understanding, Academic Press,
New York, pp. 35-82.

© 2010 Alexander Victor Berka All Rights Reserved. Published by Isynchronise Ltd, 17th June 2010

http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183
http://arxiv.org/pdf/1005.5183

